INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2011-12 Statistics - II, Backpaper Examination

1. The life time X, of a certain product, has the $Exponential(\theta)$ distribution with density

 $f(x|\theta) = \theta \exp(-\theta x), x > 0, \theta > 0.$

Let X_1, \ldots, X_n be life times of a random sample of n > 1 such products. Consider testing

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$

(a) Show that the conditions required for the existence of UMP test are satisfied here.

(b) Derive the UMP test of level α .

2. Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be independent random samples, respectively, from $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$, where μ_1, μ_2 and σ^2 are unknown. For testing

[10]

$$H_0: \mu_1 = \mu_2$$
 versus $H_1: \mu_1 \neq \mu_2$,

find the generalized likelihood ratio test at the significance level α . [10]

3. The number of occurrences of a certain disease, X, is assumed to have the Poisson(λ) distribution with mean λ . Consider data X_1, \ldots, X_n from n > 1 widely separated areas.

(a) Derive the maximum likelihood estimator, $\hat{\lambda}$, of λ .

(b) Is $\hat{\lambda}$ a consistent estimator of λ ?

(c) Derive the asymptotic distribution of $\hat{\lambda}$.

(d) Derive the asymptotic distribution of $(\hat{\lambda})^{1/2}$. (e) Find a large in a large in a set $\hat{\lambda}$

(e) Find a large sample 95% confidence interval for λ using (d). [15]

4. Consider a trial which ends up in 'Success' with probability p or 'Failure' with probability 1 - p, $0 . Let X denote the number of independent trials required to obtain the first 'Success'. Let <math>X_1, \ldots, X_n$ be a random sample from the distribution of X. Assume the Beta(a, b) prior distribution on p.

(a) Derive the posterior distribution p given the data.

(b) Find the highest posterior density estimate of p.

(c) Find the posterior mean and posterior standard deviation of *p*. [15]